Human pluripotent stem cells as alternative models to study trophoblast development

نویسندگان

  • Youssef Hibaoui
  • Anis Feki
چکیده

The trophoblast, which is derived from the extraembryonic trophectoderm, is the first cells differentiated from the preimplantation mammalian embryos. In this regard, two differentiation pathways are critical for the survival and development of the embryo in utero. In the first one, cytotrophoblasts (CTBs) fuse into a layer of syncytiotrophoblasts that covers the chorionic villi. These cells are responsible for hormone production, nutrient and gas exchanges between the mother and the developing fetus. In the second one, CTBs in the anchoring chorionic villi invade the uterus and its blood vessels establishing the maternal-fetal interface (RedHorse et al., 2004; Roberts and Fisher, 2011). Dysfunction of these differentiation pathways is associated with a wide range of human pregnancy complications such as infertility, preterm birth, pre-eclampsia, intrauterine growth restriction and aneuploidies (Red-Horse et al., 2004). To date, most of the insights on placental trophoblast development have been gained through transgenic mouse models and mouse trophoblast stem cells with placental defects (Kunath et al., 2004). Despite similarities to human phenotype, mouse models have several drawbacks and cannot integrate the specificities of human placentation. To overcome the unfeasibility of performing in vivo experimentation in humans, cell lines derived from human choriocarcinoma or virally transformed human trophoblast cell lines are widely used to investigate the mechanisms involved in trophoblast differentiation (Hannan et al., 2010). However, general limitations of using cell lines exist such as their genetic background and the potential changes acquired after their transformation and during their establishment in culture. Alternatively, primary trophoblast cultures have been derived from human placentas at the first trimester or at term of pregnancy. While these cells might be an excellent model to study trophoblast differentiation, they are often difficult to obtain and do not proliferate in culture. In addition, these cells are already committed to the trophoblast lineage and therefore are not amenable to study early trophoblast development. The discovery that human pluripotent stem cells (hPSCs) can be differentiated into trophoblast cells through bone morphogenetic proteins (BMPs) (Xu et al., 2002) has opened up a new field of investigation in human trophoblast developmental biology and disease (Ezashi et al., 2012; Golos et al., 2013). Thomson’s group was the first showing trophoblast differentiation of human embryonic stem cells (hESCs) following BMP4 treatment (Xu et al., 2002). Then, the same group has shown that in the presence of high concentrations of FGF2, BMP4 treatment results in the differentiation of hESCs into mesendoderm rather than trophoblast. They demonstrated in particular that FGF signaling switches BMP4-induced differentiation of hESCs into mesendoderm via the maintenance of NANOG expression through MEK/ERK pathway (Yu et al., 2011). Thereafter, other studies have emphasized the need of dual inhibition of FGF signaling (with PD173074 or SU5402) and TGF-β/ACTIVIN/NODAL signaling (with SB431542 or A83-01) to support trophoblast induction specifically (Sudheer et al., 2012; Amita et al., 2013). Under these conditions, BMP4-induced differentiation leads to the emergence of both chorionic gonadotrophin β-secreting syncytiotrophoblasts with a villous CTB phenotype and HLA-G+ trophoblast cells with invasive properties as the extravillous CTBs (Marchand et al., 2011; Sudheer et al., 2012; Amita et al., 2013; Li et al., 2013). Furthermore, by their ability to recapitulate the early and late steps of trophoblast development, hESCs should become valuable tools to study the cellular and molecular mechanisms involved in trophoblast cell maintenance, specification and differentiation. Since 2007, the generation of human induced pluripotent stem cells (hiPSCs) has allowed researchers to study the development and/or progression of several pathologies including neurological diseases [reviewed in Hibaoui and Feki (2012)]. It is undoubted that similar approaches using patient-specific iPSCs will offer the opportunity to reproduce normal and pathological trophoblast development. Moreover, hiPSCs exhibited additional advantages compared to hESCs. First, hiPSCs do not require the use of human embryos, which makes their use in basic research less ethically controversial. They are also technically easier to obtain. Last but not least, they offer the opportunity to generate iPSC lines specific for patients with pregnancy complications. Of note, the recent discovery that iPSCs generated by in vivo reprogramming of adult mouse cells efficiently differentiate into the three germ layers and extraembryonic tissue (Abad et al., 2013), may improve our understanding of

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-Scale Expansion of Human Embryonic and Induced Pluripotent Stem Cells for Cell Therapy Applications

Successful isolation, derivation and culturing of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem (hiPSCs) cells in laboratory scale has opened new horizones for cell therapy applications such as tissue engineering and regenerative medicine. However, most of the cell therapy protocols using these unique cells require large number of ...

متن کامل

I-54: New Models for Human and Mouse Genetic

The possibility to reprogram somatic human cells will greatly and deeply change genetic approach and allow the development of new tools to study genetics diseases. Indeed, our ability to study human genetic diseases suffers from the lack of valid in vitro models. The latter should (i) be originating from human primary cells, (ii) be able to self-renew for a long time and (iii) be able to differ...

متن کامل

A Quick update from the Past to Current Status of Human Pluripotent Stem Cell-derived Hepatocyte culture systems

Pluripotent stem cells (PSCs) may be offered as an unlimited cell source for the hepatocyte generation. The generation of hepatocytes from stem cells in vitro would provide an alternative cell source for applications in drug discovery and cell transplantation. In this review, we discuss different approaches to generate pluripotent stem cell-derived hepatocytes, advantages, limitations for each ...

متن کامل

P-50: Elongating and Elongated Spermatids Manufactured In Vitro from Non-Human Primate Pluripotent Stem Cells

Background: We have recently shown that human embryonic (hESCs) and induced pluripotent stem cells (hiPSCs) can differentiate into advanced spermatogenic cells including round spermatids by in vitro culture (Easley et al., Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Reports 2, 440-446 2012) and also, in collaboration, that rhesus spermatogonial ...

متن کامل

Induced pluripotent stem cells (iPSCs) based approaches for hematopoietic cancer therapy

Induced pluripotent stem cells (iPSCs) are reprogrammed from somatic cells through numerous transcription factors. Human induced pluripotent stem cell approaches are developing as a hopeful strategy to improve our knowledge of genetic association studies and the underlying molecular mechanisms.  Rapid progression in stem cell therapy and cell reprogramming provides compelling reasons for its fe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013